
PROSPECTS OF POTENT MEDICINAL MUSHROOM, Cordyceps militaris (CORDYCEPS): REALM OF PHARMACOLOGICAL ACTIVITIES
PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY,
Page 142-157
Abstract
The mushroom Cordyceps militaris (CM) is a renowned Chinese traditional remedy found in many Asian countries and some parts of Europe and North America. Cordyceps militaris an entomopathogenic fungus can be cultivated easily and commercially available than other Cordyceps species. It helps in the revitalization of the body system from ancient time and had the potential to treat cancer patients without harming the host. The objective of this article is to review the C. militaris chemical constituents, its production and its pharmacological activities. Extracts from C. militaris, therapeutic agents or bioactive compounds such as cordycepin, ergosterol, exopolysaccharides and their subunits have a significant nutrient powerhouse and potential to exhibit anti-tumour, anticancer, anti-inflammatory, antioxidant, antidiabetic, antiangiogenic activity, hypoglycaemic, antimicrobial, and possible in prognosis. Among all the compounds found in C. militaris, a sophisticated potent cordycepin is much abundantly found in cultured C. militaris. C. militaris has been cultivated under the lab-scale with standard nutrition and climatic conditions. Submerged mycelia produce more cordycepin than the aerial mycelia in the C. militaris culture media and upregulate the gene of biological process and molecular function. Hence, C. militaris is providing a deep understanding of all its components and creating novel therapeutic strategies to cure many diseases.
Keywords:
- Cordyceps militaris
- entomopathogenic
- pharmacological
- cordycepin
How to Cite
References
Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982; 85(02):411.
Gu YX, Want ZS, Li SX, Yau QS. Effects of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 2007;102:1304-9
Qin P, Li X, Yang H, Wang ZY, Lu D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 2019;24(12):2231.
Sehgal AK, Sagar A. In vitro isolation and influence of nutritional conditions on the mycelial growth of the entomopathogenic and medicinal fungus Cordyceps militaris. Plant Pathology Journal. 2006;5: 315-321.
Shrestha B, Sung JM. Notes on Cordyceps species Collected from the Central Region of Nepal. Mycobiology. 2005;33(4):235.
Mains EB. North American entomogenous species of Cordyceps. Mycology. 1958;50: 169-222
Ogris N. Database of fungi of Slovenia Boletus informaticus; 2013. [Solvenian]
Hamburger M. Comment on comparison of protective effects between cultured Cordyceps militaris and natural cordyceps sinensis against oxidative damage. Journal of Agricultural and Food Chemistry. 2007; 55(17):7213–7214.
Chai JP, Bai XR, Xie DY. Comparing and screening experiments on different fungi strains of Cordyceps militaris. Yunnan Agricultural Science and Technology. 2003;17:27-28.
Wang Q. Comparing study on the effect of cleaning hydroxyl radical between natural Cordyceps militaris and cultured Cordyceps militaris. Journal of Liaoning Teachers College. 2002;4(3):43-45.
Sung JM, Choi YS, Lee HK, Kim SH, Kim YO, Sung GH. Production of fruiting body using cultures of entomopathogenic fungal species. Kor J Mycol. 1999;27:15-9.
Xiong C, Xia Y, Zheng P, Shi S, Wang C. Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology. 2010; 1(1):25–66
Suparmin A, Kato T, Takemoto H, Park EY. Metabolic comparison of aerial and submerged mycelia formed in the liquid surface culture of Cordyceps militaris. Microbiology Open. 2019;e836.
Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Applied Micro-biology and Biotechnology. 2006;72(6): 1152–1156.
Wang Y, Shao Y, Zhu Y, Wang K, Ma B, Zhou Q, Chen A, Chen H. XRN1‐ associated long non‐coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris. Society of Chemical Industry; 2019a.
Chen DD, Xu R, Zhou J, Chen J, Wang L, Liu X, Liang C, Liu B, Lu R, Wu J, Lin H. Cordyceps militaris polysaccharides exerted protective effects on diabetic nephropathy in mice via regulation of autophagy. Food & Function; 2019.
Yang Q, Yin Y, Yu G, Jin Y, Ye X, Shrestha A, Liua W, Yua W, Sun H. A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris. International Journal of Biological Macromolecules. 2015;80: 385–391.
Yu R, Yang W, Song L, Yan C, Zhang Z, Zhao Y. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydrate Polymers. 2007;70(4):430–436.
Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY, Cho CK. Effects of Cordyceps militaris extract on angiogenesis and tumour growth. Acta Pharmacol Sin. 2004;25:657–65.
Lin YW, Chiang BH. Anti-tumour activity of the fermentation broth of Cordyceps militaris cultured in the medium of Radix astragali. Process Biochemistry. 2008; 43(3):244–250.
Lim L, Lee C, Chang E. Optimization of solid-state culture conditions for the production of adenosine, cordycepin, and d-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.: Fr.) Link (Ascomycetes). International Journal of Medicinal Mushrooms. 2012; 14(2):181–187.
Yu R, Yin Y, Yang W, Ma W, Yang L, Chen X, Zhang Z, Ye B, Song L. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris. Carbohydrate Polymers. 2009;75(1):166–171.
Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Letters in Applied Microbiology. 2001;33(1):76–81.
Li SP, Li P, Lai CM, Gong YX, Kan KW, Dong TTX, Tsim KWK, Wang YT. Simultaneous determination of ergosterol, nucleosides and their bases from natural and cultured Cordyceps by pressurised liquid extraction and high-performance liquid chromatography. Journal of Chromatography A. 2004;1036(2):239–243
Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung G, Kang H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience. 2014;1:866.
Tochikura TS, Nakashima H, Hirose K, Yamamoto N. A biological response modifier, PSK, inhibits human immune-deficiency virus infection in vitro. Biochemical and Biophysical Research Communications. 1987;148(2):726–733.
Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of Ethnopharmacology. 2005;96(3):555–561.
Kim JR, Yeon SH, Kim HS, Ahn YJ. Larvicidal against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris. Pest Management Science. 2002;58:713-717.
Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, Hayashi T. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. Journal of Agricultural and Food Chemistry. 2007;55(25):10194–10199.
Park BT, Na KH, Jung EC, Park JW, Kim HH. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. The Korean Journal of Physiology and Pharmacology. 2009a;13(1):49.
Nan JX, Park EJ, Yang BK, Song CH, KO G, Sohn DH. Antifibrotic effect of extracellular biopolymer from submerged mycelial cultures of Cordyceps militaris on liver fibrosis induced by bile duct ligation and scission in rats. Arch, Pharm. Res. 2001;24:327-332.
Chang Y, Jeng KC, Huang KF, Lee YC, Hou CW, Chen KH, Cheng FY, Liao JW, Chen YS. Effect of Cordyceps militaris supplementation on sperm production, sperm motility and hormones in Sprague-Dawley rats. Am. J. Chin. Med. 2008;36: 849–859.
Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: A perspective from the fungal kingdom. Microbiology and Molecular Biology Reviews. 2010a;74(2): 298–340.
Kim HS, Kim JY, Kang JS, Kim HM, Kim YO, Hong IP, Lee MK, Hong JT, Kim Y, Han SB. Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings. Food and Chemical Toxicology. 2010;48(7):1926–1933
Kim SW, Xu CP, Hwang HJ, Choi JW, Kim CW, Yun JW. Production and characterization of exopolysaccharides from an entomopathogenic fungus Cordyceps militaris. NG3; 2003.
Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, Wu Y, Ye W, Yao X. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 2004a;75(5):465–472.
Yu R, Wang L, Zhang H, Zhou C, Zhao Y. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia. 2004b;75(7-8):662–666.
Rao YK, Fang SH, Wu WS, Tzeng YM. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. Journal of Ethnopharmacology. 2010;131(2):363-367.
Lee JS, Kwon JS, Yun JS, Pahk JW, Shin WC, Lee SY, Hong EK. Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydrate Polymers. 2010b;80(4):1011–1017.
Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chemical Biology. 2017;24(12):1479–1489.
Yu HM, Wang BS, Huang SC, Duh PD. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. Journal of Agricultural and Food Chemistry. 2006;54(8):3132–3138.
Chiang SS, Liang ZC, Wang YC, Liang CH. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. Journal of Food Composition and Analysis. 2017;60:51– 56.
Ha SY, Jy J, Jh P, Dh L, Jw C, JK Y. Effect of light-emitting diodes on cordycepin production in submerged C. militaris cultures. Journal of Mushroom. 2020;18(1): 10-19.
Pathania P, Sagar A. Study on the biology of Cordyceps militaris: A medicinal mushroom of North West of Himalaya. Kavaka. 2014;43:35-40.
Liu XC, Zhu ZY, Tang YL, Wang M, Wang Z, Liu AJ, Zhang YM. Structureal properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydrate Polymers. 2016;142:63-72.
Wang CC, Wu JY, Chang CY, Yu ST, Liu YC. Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. Journal of Bioscience and Bioengineering; 2018.
Jeong, MH, Park YS, Jeong DH, Lee CG, Kim JS, Oh SJ, Jeong SK, Yang K, Jo WS. In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. International Journal of Molecular Medicine. 2014;34(5):1349–1357.
Xiao L, Ge Y, Sun L, Xu X, Xie P, Zhan M, Wang M, Dong Z, Li J, Duan S, Liu F, Xiao P. Cordycepin inhibits albumin-induced epithelial-mesenchymal transition of renal tubular epithelial cells by reducing reactive oxygen species production. Free Radical Research. 2012; 46(2):174–183.
Olatunji OJ, Feng Y, Olatunji OO, Tang J, Ouyang Z, Su Z. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomedicine & Pharmacotherapy. 2016;81: 7–14.
Wang M, Meng XY, Yang RL, Qin T, Wang XY, Zhang KY, Fei CZ, Li Y, Hu YL, Xue FQ. Cordyceps militaris polysac-charides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydrate Polymers. 2012;89(2): 461–466.
Shen Q, Chen S. Effect of Cordyceps militaris on the damage of rats induced by n-hexane. Zhong Yao Cai. 2001;24:112-116.
Liu J, Yang S, Yang X, Chen Z, Li J. Anticarcinogenic effect and hormonal effect of Cordyceps militaris Link. Zhongguo Zhong Yao Za Zhi. 1997;22: 111-113.
Lee KH, Min TJ. Purification and characterization of chitinase in culture media of Cordyceps militaris(L.) Link, Korean J Med Mycol. 2003;31:168-174.
Park SE, Kim J, Lee YW, Yoo HS, Cho CK. Antitumor activity of water extracts From Cordyceps militaris in NCI-H460 cell xenografted nude mice. Journal of Acupuncture and Meridian Studies. 2009c; 2(4):294-300.
Ji Y, Cao Y, Song Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):2737–2745.
Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncology Letters. 2015;10(2): 595–599.
Park SE, Yoo HS, Jin CY, Hong SH, Lee YW, Kim BWK, Lee SH, Kim WJ, Cho CK, Choi YH. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food and Chemical Toxicology. 2009b;47(7):1667-1675.
Kim HW, Kim YH, Cai XF, Nam KS, Lee SJ, An HS, Jeong EH, Yun SH, Sung SK, Lee SJ, Hyun JW. In vitro antitumor activity of ergosterol peroxide isolated from Cordyceps militaris on cancer cell lines from Korean patients. Korean Journal of Mycology. 2001;29:61-66. [In Korean]
Lim HW, Kwon YM, Cho SM, Kim JH, Yoon GH, Lee SJ, Kim HW, Lee MW. Antitumor activity of Cordyceps militaris on human cancer line. Korean Journal of Pharmacognosy. 2004;35:364-367.
Jeong MK, Yoo HS, Kang IC. The extract of Cordyceps militaris inhibited the proliferation of cisplatin-resistant a549 lung cancer cells by downregulation of H-Ras. Journal of Medicinal Food; 2019.
Bi Y, Li H, Yi D, Sun Y, Bai Y, Zhong S, Song Y, Zhao G, Chen Y. Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway. Molecular Pharmaceutics; 2018.
Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry. 2000;48: 2744-2748.
Tuli HS, Sandhu SS, Kashyap D, Sharma AK. Optimization of extraction conditions and antimicrobial potential of bioactive metabolite, cordycepin from Cordyceps militaris 3936. World Journal of Pharmacy & Pharmaceutical Sciences. 2014;3(4): 1525-1535.
Lee JS, Hong EK. The immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. International Immunopharmacology. 2011;11(9):1226–1233
Chen SY, Ho KJ, Hsieh YJ, Wang LT, Mau JL. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT - Food Science and Technology. 2012;47(2):274–278
Jaturapat A, Isaka M, Hywel-Jones NL, Lertwerawat Y, Kamchonwongpaisan S, Kirtikara K, Tanticharoen M, Thebtaranonth Y. Bioxanthracenes from the insect pathogenic fungus. Cordyceps pseudo militaries BCC 1620. I. Taxonomy, fermentation, isolation and antimalarial activity; 2001.
Chen YS, Liu BL, Chang YN. Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean Journal of Chemical Engineering. 2011;28(3):875–879.
Rukachaisirikul V, Chantaruk S, Tansakul C, Saithong S, Chaicharernwimonkoon L, Pakawatchai C, Pakawatchai C, Isaka M, Intereya K. A cyclopeptide from the insect pathogenic fungus Cordycep ssp. BCC 1788. Journal of Natural Products. 2006; 69(2):305-307.
Wong JH, Ng TB, Wang H, Sze SCW, Zhang KY, Li Q, Lu X. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine. 2011;18(5):387–392.
Watanabe N, Hattori M, Yokoyama E, Isomura S, Ujita M, Hara A. Entomogenous fungi that produce 2,6-pyridine dicarboxylic acid (dipicolinic acid). Journal of Bioscience and Bioengineering. 2006; 102(4):365–368.
Kim JS, Sapkota K, Park SE, Choi BS, Kim S, Ngugen TH, Kim CS, Choi HS, Kim MK, Chun HS, Park Y, Kim SJ. A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbial. 2006;44:622-623.
Jung EC, Kim KD, Bae CH, Kim JC, Kim DK, Kim HH. A mushroom lectin from ascomycete Cordyceps militaris. Biochimica et Biophysica Acta (BBA) - General Subjects. 2007;1770(5):833–838.
Hattori M, Isomura S, Yokoyama E, Ujita M, Hara A. Extracellular trypsin-like proteases produced by Cordyceps militaris. Journal of Bioscience and Bioengineering. 2005;100(6):631–636.
Wang Z, He Z, Li S, Yuan Q. Purification and partial characterization of Cu, Zn containing superoxide dismutase from entomogenous fungal species Cordyceps militaris. Enzyme and Microbial Technology. 2005;36(7):862–869.
He MT, Lee AY, Kim JH, Park CH, Shin YS, Cho EJ. Protective role of Cordyceps militaris in Aβ1–42-induced Alzheimer’s disease in vivo. Food Science and Biotechnology; 2018.
Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatecto-mized rats. Bioscience, Biotechnology, and Biochemistry. 2004;68(11):2257– 2264.
Tran NKS, Kim GT, Park SH, Lee D, Shim SM, Park TS. () Fermented Cordyceps militaris Extract Prevents Hepatosteatosis and Adipocyte Hypertrophy in High Fat Diet-Fed Mice. Nutrients. 2019;11(5): 1015.
Sun T, Dong W, Jiang G, Yang J, Liu J, Zhao L, Ma P. Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB redox signaling pathway. Oxidative Medicine and Cellular Longevity. 2019;1–16.
Zhao-Long W, Xiao-Xia W, Wei-Ying C. Inhibitory effect of Cordyceps sinensis and Cordyceps militaris on human glomerular mesangial cell proliferation induced by native LDL. Cell Biochemistry and Functions. 2000;18:93-97.
Wang HB, Duan MX, Xu M, Huang SH, Yang J, Yang J, Liu LB, Huang R, Wan CX, Ma ZG, Wu QQ, Tang QZ. Cordycepin ameliorates cardiac hypertro-phy via activating the AMPKα pathway. Journal of Cellular and Molecular Medicine; 2019b.
Kopalli SR, Cha KM, Lee SH, Hwang SY, Lee YJ, Koppula S, Kim SK. Cordycepin, an active constituent of nutrient power-house and potential medicinal mushroom Cordyceps militaris Linn., ameliorates age-related testicular dysfunction in rats. Nutrients. 2019;11(4):906.
-
Abstract View: 829 times
PDF Download: 8 times